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Abstract. We give new, conceptually simple procedures for calculating special integrals
of polynomial type (also known as Darboux polynomials, algebraic invariant curves, or
eigenpolynomials), for ordinary differential equations. In principle, the method requires only
that the given ordinary differential equation be itself of polynomial type of degree one and
any order. The method is algorithmic, is suited to the use of computer algebra, and does not
involve solving large nonlinear algebraic systems. To illustrate the method, special integrals of
the second, fourth and sixth Painlevé equations, and a third-order ordinary differential equation
of Painlev́e type are investigated. We prove that for the second Painlevé equation, the known
special integrals are the only ones possible.

1. Introduction

The motivation for this article was to find, algorithmically, general integrals of ordinary
differential equations such as

x2FF ′′′ = (x2F ′ − xF)F ′′ − F 3F ′ − 2µ1(xF − x2F ′) + µ2xF 2 (1.1)

where′ ≡ d/dx. Equation (1.1) arises as a reduction of an integrable system, in this case a
(2+ 1)-dimensional sine-Gordon system [1]. Despite not possessing any symmetries to aid
in its integration, it possesses a general integral which is a rational expression inF ′′, F ′, F

andx.
The seeking of such integrals has a long history. Darboux [2] sought rational solutions

to first-order, first-degree equations,1, and noted that the factors,Q, of the numerator and
denominator of the solution satisfy an equation of the form

d

dx
Q − bQ ≡ 0 mod1. (1.2)

This insight generalizes to higher-order equations, for which in (1.2) one seeksdifferential
polynomials, that is, expressions which are polynomial in the variables and the derivative
terms. The expressionQ is known variously as a Darboux polynomial, algebraic invariant
curve, special integral, or eigenpolynomial, amongst other terms [3]. Recent articles have
advocated the calculation ofQ by substituting arbitrary differential polynomials in (1.2)
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and solving the resulting nonlinear algebraic system for the numerical coefficients, using
the theory of Gr̈obner bases [4, 5]. For an equation such as (1.1), this method requires
considerable computational effort. Even if one does know the degrees ofF ′′, F ′, F andx

in Q, namely 2, 3, 4 and 2, whicha priori one does not, one would still have hundreds of
nonlinear equations for the 180 coefficients to be determined. In the special case ofµ2 = 0,
(1.1) was integrated in [6] by assuming an ansatz of the form

Q = A(x, F, F ′)(F ′′)2 + B(x, F, F ′)F ′′ + C(x, F, F ′)

and solving the resulting overdetermined nonlinear system of partial differential equations
for A, B and C, by means of variousad hocsimplifying assumptions, such as restricting
the dependence of the functionsA, B and C. However, analgorithmic, computationally
feasible solution was sought.

The method developed in this paper reduces the calculation ofQ andb for (1.1) to a
succession of linear ordinary differential equations of Euler type. This is achieved by first
solving for the dependence ofA, B andC in (1.1) onF ′, iterating to obtain their dependence
on F , and finally solving an overdetermined system of consistency conditions for their
dependence onx. For the examples in this paper at least, these overdetermined systems can
be solved straightforwardly. The fact they are overdetermined means integrability conditions
and the like can be calculated to simplify them, or in other examples, lead to conditions on
the parameters in the original equation for a solution to exist.

We illustrate the ideas involved by calculating special integrals of polynomial type of
the second, fourth and sixth Painlevé equations. The abundance of such special integrals,
or one-parameter family conditions, for these equations means they are a good test of any
method designed to find them. For example, in 1910, Gambier [8] discovered that for
α = 1

2, the second Painlevé equation

8α ≡ y ′′ − 2y3 − xy − α = 0 (1.3)

has the special integral

Q = y ′ − y2 − 1
2x (1.4)

which satisfies
d

dx
Q + 2yQ = y ′′ − 2y3 − xy − 1

2. (1.5)

Note thatQ is not a general first integral in the sense that any solution ofQ = κ whereκ is
an arbitrary constant will satisfy81/2, only a solution ofQ = 0 will satisfy 81/2. We use
our method to prove that the second Painlevé equation has special integrals of polynomial
type if and only if

α = 1
2(2n + 1) n ∈ Z.

The existence of these special integrals leads to solutions of the second Painlevé equation
in terms of the Airy function for these parameter values.

Painlev́e, and subsequently Fuchs and others around the turn of the century, sought to
classify those ordinary differential equations of the form,

y ′′ = F(y ′, y, x)

where F is rational in y ′ and y and analytic inx, whose solutions have no movable
singularities other than poles. The Painlevé equations are six nonlinear ordinary differential
equations having these properties whose general solutions cannot be expressed in terms
of the known elementary or transcendental functions. The Painlevé transcendents are
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regarded as nonlinear special functions as they possess several properties analogous
to those of the classical special functions. For example, for certain parameter
values, the classical transcendental equations have polynomial solutions and solutions
expressible in terms of elementary functions, while the Painlevé equations have particular
solutions which are rational or expressible in terms of classical transcendental functions.
In addition, the classical transcendental functions satisfy recurrence relations while
Bäcklund transformations relate solutions of the Painlevé equations. Finally, the Laplace
transformation can be used to solve the classical transcendental equations, while the Painlevé
equations can be solved by the isomonodromy deformation method (cf [7, 9, 10]).

Special integrals of polynomial type for the Painlevé equations can often be obtained
from the isomonodromy deformation method. The idea behind the method is to study the
Painlev́e equation by expressing it as an integrability condition of a linear system, or Lax
pair, which possesses both regular and irregular singular points. It is often the case that for
certain parameter values the formal series solution, or Frobenius expansion, about a certain
regular singular point breaks down. (Within the terminology of Frobenius this occurs when
the roots of the indicial equation differ by an integer). These parameter values are the
same as those characterizing particular integrals of the associated Painlevé equation, and
indeed the nature of the formal solution of the linear system restricts the variables to be
solutions of the particular integrals of the associated Painlevé equation. In many cases the
full set of known particular integrals arises in this way, however this is not always true [10].
Examples exist where only part of the set is characterized in this way. In these cases there
are definite indications that the ‘missing’ integrals are characterized in some other part of the
linear system, but such calculations require experience with the isomonodromy deformation
method, and results may not be as easy to obtain as the method described here. Further,
it is a non-trivial problem to obtain the Lax pair for an ordinary differential equation of
Painlev́e type in general.

Equations of Painlev́e type have become important in recent years because they arise as
reductions of systems solvable by inverse scattering, and their exact analytic solutions are
important as they can be used to generate exact solutions of nonlinear integrable systems
[7, 11]. Painlev́e equations have many physical applications, including asymptotics of
nonlinear evolution equations, correlation functions in theXY model, the two-dimensional
Ising model, statistical mechanics, plasma physics, resonant oscillations in shallow water,
convective flows with viscous dissipation, Görtler vortices in boundary layers, nonlinear
waves, polyelectrolytes, general relativity, nonlinear optics and fibre optics, quantum gravity
and quantum field theory. References for these applications can be found in [7, section 7.1.6]
and [12, p 119]. Since many of the known solutions of the Painlevé equations arise
as solutions of special integrals of polynomial type occurring for certain values of the
parameters, a systematic procedure that can generate all such integrals is important.

Kolchin and his group knew that the first Painlevé equation has no special integrals of
polynomial type [13], the proof being recorded in a handwritten manuscript† (see also [14]).

In seeking integrals more general than those of rational type, historically ‘elementary’
and ‘Liouvillian extensions’ have been sought, that is, expressions that also involve radical,
exponential and logarithmic terms, and their integrals with respect to the independent
variable. Prelle and Singer proved that to find elementary first integrals for general algebraic
differential equations, it was sufficient to seek them in a certain form, and they demonstrate
the central role the special integrals or Darboux polynomials have in the calculation of
elementary first integrals in their examples [15]. More recently, there has been interest in

† ELM is indebted to Michael Singer for a copy of this manuscript.
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the relationship between the existence of special integrals and the differential Galois group
for linear differential equations [3]. Theorems proving bounds on the degree (with respect
to y ′) of polynomial type integrals for certain sorts of differential systems are known (cf
[15] and references therein, and [16]). The examples given in the present paper show that
in general any such bound depends necessarily on the numerical coefficients and parameters
appearing in the equation.

The method for the calculation of special integrals demonstrated here is algorithmic,
simple in concept, and applicable (in principle) to any differential equation of polynomial
type in which the highest-order derivative term occurs to highest power one. The method
is simple enough to be able to be generalized to function spaces other than polynomial, but
the function space used would depend on the equation to be integrated.

2. Integrals of polynomial type

Here, we briefly review the main facts concerning special integrals of polynomial type,
and fix our notation. For simplicity, we assume an ordinary differential equation of order
two and degree one, and thus an integral of order one. However, all the results in this
section generalize to equations of arbitrary order and degree one. (Recall that the order
of a differential equation is the highest number of times a dependent variable has been
differentiated in the equation, while the degree of the equation is the highest power of the
highest derivative term occurring in the equation).

We assume the integralQ to be of the form

Q =
N∑

k=0

qk(x, y)(y ′)k (2.1)

whereN > 0, qN 6= 0 and where theqk are assumed to be polynomial with respect toy.
For the sake of simplicity, suppose further thatQ is irreducible, that is,Q has no more
than one factor depending ony ′, and let the equation studied be of the form

8 ≡ y ′′ − W(x, y, y ′) = 0

whereW is a polynomial with respect toy and y ′. By definition, the special integralQ
satisfies a relation

D(x, y, y ′, y ′′)
dQ

dx
− B(x, y, y ′, y ′′)Q = H(x, y, y ′, y ′′)(y ′′ − W(x, y, y ′)) (2.2)

whereD, B andH are polynomial with respect to all variables except perhapsx, and where
Q = 0 andH = 0 have only trivial solutions in common. This implies in particular thatQ

does not divideH . The reason for this assumption is that we want any solution ofQ = 0
to be a solution of8.

Let Qx denote the partial derivative ofQ with respect tox, that is, the derivative ofQ
with respect to its explicit dependence onx, regardingx, y andy ′ as separate independent
variables, and similarlyQy andQy ′ . We then have the identity

dQ

dx
= Qx + y ′Qy + y ′′Qy ′ (2.3)

showing that dQ/dx is linear iny ′′. We can now considerably simplify the problem (2.2)
to be solved. All occurrences ofy ′′ in D and B can be absorbed intoH by subtracting
suitable multiples of8. SinceQ does not depend ony ′′, we have by comparing powers of
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y ′′ on both sides of the equation (2.2) thatH does not depend ony ′′, so that we need only
solve

D(x, y, y ′)
dQ

dx
− B(x, y, y ′)Q = H(x, y, y ′)(y ′′ − W(x, y, y ′)). (2.4)

Further, considering coefficients ofy ′′ on both sides of the equation (2.4) leads to the
identity, DQy ′ = H , hence it sufficient to solve

D(x, y, y ′)
(
Qx + y ′Qy + W(x, y, y ′)Qy ′

) = B(x, y, y ′)Q. (2.5)

Now, sinceQ does not divideH , it does not divideD, so it must be true thatQ divides
Qx +y ′Qy +W(x, y, y ′)Qy ′ , using the assumption thatQ is irreducible (it is a well known
fact from algebra that iff , g andh are polynomials withf irreducible, such thatf divides
gh, thenf must divide one ofg, h). Thus, it is sufficient to solve the problem

Qx + y ′Qy + W(x, y, y ′)Qy ′ = b(x, y, y ′)Q. (2.6)

For the more general8 ≡ A(x, y, y ′)y ′′ − W(x, y, y ′), the same arguments yield that
it is sufficient to solve

AQx + Ay ′Qy + WQy ′ = b(x, y, y ′)Q. (2.7)

In the next lemma, we note that our search for polynomial integrals will yield every
solution infinitely many times!

Lemma 2.1. If Q is an integral of polynomial type, then so isQp for any p ∈ N, p 6= 0.

Proof. SupposeQ satisfies (2.7). InsertingQp in the left-hand side of (2.7) we obtain
that Qp satisfies

A(Qp)x + Ay ′(Qp)y + W(x, y, y ′)(Qp)y ′ = p · b(x, y, y ′)Qp.

Thus, any solutionQ of (2.7) will imply infinitely many ‘redundant solutions’,Qp. Indeed,
a function of an integral will be an integral, although not necessarily of polynomial type.

�

Irreducible special integrals of polynomial type are not unique. Given several such
integrals, it is sometimes possible to combine them to obtain a general integral. A summary
of known results appears in [5].

Although we assumedQ to be irreducible, this is not actually a restriction. It is simple
to show that ifQ1 and Q2 are integrals, then so isQ1Q2. The converse is also true; if
Q1Q2 is an integral, then so areQ1 and Q2 (provided both factors contain the highest
derivative term); cf [3]. Thus it suffices to find the irreducible integrals.

Before turning to the mechanics of finding special integrals of polynomial type of
particular equations, we record in the following table the so-called leading-order constraints,
in the caseAy ′ = 0. We use (2.1) and (2.7) and set

b(x, y, y ′) =
M∑

k=0

bk(x, y)(y ′)k W =
R∑

k=0

wk(x, y)(y ′)k.

Comparing leading powers ofy ′ on both sides of (2.7) yields constraints onM, qN , and
bM , which are given in table 1.
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Table 1. Leading-order constraints for integrals ofA(x, y)y′′ − W(x, y, y′) = 0.
N = deg(Q, y′), M = deg(b, y′), R = deg(W, y′).

R Constraints Possibilities forM

0, 1 (i) qN,y = 0 M = 0
(ii) AqN,y = qNbM M = 1

2 (i) AqN,y + NwRqN = 0 M = 0
(ii) AqN,y + NwRqN = bMqN M = 1

> 3 NwR = bM M = R − 1

3. Calculations for the second Painlev́e equation

In this section we show how to generate systematically all integrals of polynomial type for
the second Painlevé equation,

8α ≡ y ′′ − 2y3 − xy − α = 0. (1.3)

Considering table 1, for the second Painlevé equation we haveR = 0, that is,Wy ′ = 0,
and A = 1, so there are two cases to consider, (i)M = 0 andqN,y = 0, and (ii) M = 1
and qN,y = bMqN . The second case has no solutions forqN polynomial in y. Before
considering case (i) in more detail for the second Painlevé equation, we note the following
lemma which we use to simplify the calculation.

Lemma 3.1. If qN,y = 0, it is sufficient to considerqN ≡ 1.

Proof. Assume thatQ satisfies (2.6). Insertingg(x)Q in the left-hand side of (2.6) we
obtain thatg(x)Q satisfies

(gQ)x + y ′(gQ)y + W(x, y, y ′)(gQ)y ′ = (
g′(x)/g(x) + b(x, y, y ′)

)
(gQ)

so any dependence ofqN on x can be absorbed intob(x, y, y ′). �

Thus, to find special integrals of the second Painlevé equation of polynomial type, it is
sufficient to solve

Qx + y ′Qy + (2y3 + xy + α)Qy ′ = b(x, y)Q (3.1)

with Q of the form

Q =
N∑

k=0

qk(x, y)(y ′)k qN ≡ 1.

Reading off coefficients of powers ofy ′ in (3.1) yields the system

qN−1,y = b (3.2N−1)

...

qN−k,y = bqN−k+1 − (N − k + 2)(2y3 + xy + α)qN−k+2 − qN−k+1,x (3.2N−k)

...

q0,y = bq1 − 2(2y3 + xy + α)q2 − q1,x (3.20)

0 = bq0 − (2y3 + xy + α)q1 − q0,x . (3.2cc)
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Setting

b =
m∑

j=0

βj (x)yj

we have from (3.2N−1) that

qN−1 =
m∑

j=0

βj (x)

j + 1
yj+1 + HN−1(x).

This is then inserted into (3.2N−2), which is integrated symbolically to obtain an expression
for qN−2 in terms of theβj , j = 0, . . . , m andHN−1, with HN−2(x) being the function of
integration. Continuing in this way, we can express theqN−1, . . . , q0 in terms of theβj with
N − 1 functions of integration, theHk, k = 0, . . . , N − 1. Then, inserting the expressions
for q0 andq1 into (3.2cc), we obtain a system,C, of consistency conditionsfor the βj and
the Hk, by setting the coefficients of the various powers ofy to zero.

We now determine the possible values form, the degree ofb with respect toy. If
m 6= 0, the degree ofqk with respect toy is (N − k)(m + 1). Then (3.2cc) implies that in
order to balance powers ofy, we must have thatm + N(m + 1) = 3 + (m + 1)(N − 1) or
m = 1. If m = 0, thenN must be an even integer. For both cases,m = 0 or 1, we obtain
that deg(qk, y) 6 2(N − k).

3.1. The simplest examples

The caseN = 1. We show this case explicitly both to show how trivial is the calculation,
and how the value ofα arises naturally as a consistency condition. InsertingQ =
q0(x, y) + y ′ in (3.1) and equating coefficients of powers ofy ′ to zero yields

q0,y = b (3.3a)

q0,x + 2y3 + xy + α = bq0. (3.3b)

We haveb = β0(x) + β1(x)y, implying q0 = β0(x)y + 1
2β1(x)y2 + H0(x). Inserting this in

(3.3b), we obtainC:

2 = β2
1/2

β ′
1(x) = 3β0β1/2

β ′
0(x) + x = H0(x)β1 + β2

0

β0(x)H0(x) = α + H ′
0(x).

Thus

b(x, y) = ±2y Q = y ′ ± y2 ± x/2 α = ∓ 1
2

which are the integrals for8±1/2 known to Gambier.

The caseN = 2. Performing the same calculation forN = 2 yields only the squares of
the two integrals obtained in theN = 1 case above.

The caseN > 3. The best strategy for solving the consistency conditionsC is to begin with
the coefficient of the highest power ofy in (3.2cc), since that involves the fewest number
of indeterminants, and to work down. We obtain the polynomial integral for8−3/2 to be

Q−3/2 = (y ′)3 + (y2 + 1
2x)(y ′)2 − [

y2 + 1
2x)2 − 4y

]
y ′ − (y2 + 1

2x)3 + 4y(y2 + 1
2x) − 2.

while the integral of83/2 is

Q3/2 = (y ′)3 − (y2 + 1
2x)(y ′)2 − [

(y2 + 1
2x)2 + 4y

]
y ′ + (y2 + 1

2x)3 + 4y(y2 + 1
2x) + 2.
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Similarly, the integral for8−5/2 is

Q−5/2 = (y ′)5 + (y2 + 1
2x)(y ′)4 − 2

[
(y2 + 1

2x)2 − 6y
]
(y ′)3

−2(y2 + 1
2x)

[
(y2 + 1

2x)2 − 6y
]
(y ′)2 +

{[
(y2 + 1

2x)2 − 6y
]2 + 2x

}
y ′

+(y2 + 1
2x)5 − 12y(y2 + 1

2x)3 + 4y4 + 26xy2 − 32y + 5
2x2 .

The formulae for the integrals become considerably more complex with increasingN , but
the calculation of them is quite straightforward.

Solutions to theQ = 0, and hence to the second Painlevé equation, are expressible in
terms of Airy functions [7, 8, 17, 18].

3.2. Transformations connecting the integrals

The second Painlevé equation has two well known Bäcklund transformations

y(x; −α) = −y(x; α) (3.4a)

y(x; α + 1) = −y(x; α) − 1 + 2α

2y(x; α)′ + 2y(x; α)2 + x
α 6= − 1

2. (3.4b)

A suitable combination of these two Bäcklund transformations yields the ‘inverse’
transformation

y(x; α − 1) = −y(x; α) − 1 − 2α

2y(x; α)′ − 2y(x; α)2 − x
α 6= 1

2. (3.5)

Note that the denominators of these transformations are proportional toQ±1/2.
Suppose, for example,y satisfies83/2. Using (3.5) one obtainsY which satisfies81/2.

Then, inserting the expression forY into the integralQ1/2 yields a rational expression
whose numerator isQ3/2. Conversely, supposey satisfies81/2. Substituting (3.4b) in
Q3/2 = 0 with α = 1

2 yields Q1/2Q
2
−1/2 = 0; sinceQ−1/2 is the denominator of the

Bäcklund transformation and is therefore non-zero, we have obtainedQ1/2 = 0.
More generally, it can be seen that Bäcklund transformations ‘lift’ to the integrals, but

operate in the reverse direction; a transformation which sends solutions of8α1 to solutions
of 8α2 will map an equationQα2 = 0 to an equationQα1 = 0 (after removal of non-
zero factors). Note that since the Bäcklund transformations are of rational type, we obtain
mappings between integrals of polynomial type.

It follows that there is an integral of polynomial type for8α for everyα of the form,
(2n + 1)/2, n ∈ Z. Further, the degree ofQ(2n+1)/2 with respect toy ′ is |2n + 1|. This
example shows that any bound on the degrees of special integrals depends necessarily on
the numerical coefficients and parameters appearing in the equation.

3.3. Recursion formulae for the general case

The method of integration outlined above is highly iterative. Indeed, recalling that
deg(qk, y) 6 2(N − k), and setting

qk(x, y) = Pk(β1)y
2(N−k) + Sk(β0, β1)y

2(N−k)−1 + Tk(β0, β1, x, HN−1)y
2(N−k)−2

+Fk(β0, β1, N, HN−1, α)y2(N−k)−3 + Ek (3.6)
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whereEi are the lower-order terms with respect toy, the calculation yields the (descending)
recursion formulae

Pk = 1

2(N − k)
(β1Pk+1 − 2(k + 2)Pk+2) (3.7a)

Sk = 1

2(N − k) − 1

(
β1Sk+1 − 2(k + 2)Sk+2 + β0Pk+1 − d

dx
Pk+1

)
(3.7b)

Tk = 1

2(N − k) − 2

(
β1Tk+1 − 2(k + 2)Tk+2 − d

dx
Sk+1 − (k + 2)xPk+2 + β0Sk+1

)
(3.7c)

Fk = 1

2(N − k) − 3

(
β1Fk+1 − (k + 2) (2Fk+2 + xSk+2 + αPk+2) − d

dx
Tk+1 + β0Tk+1

)
(3.7d)

with initial data

PN = 1 PN−1 = 1
2β1 (3.8a)

SN = 0 SN−1 = β0 (3.8b)

TN = 0 TN−1 = HN−1(x) (3.8c)

FN = 0 FN−1 = 0. (3.8d)

Inserting (3.6) in (3.2cc) and then setting to zero the coefficients ofy yields the
consistency conditions

β1P0 − 2P1 = 0 (3.9a)

β0P0 + β1S0 − 2S1 − P ′
0 = 0 (3.9b)

β0S0 + β1T0 − 2T1 − xP1 − S ′
0 = 0 (3.9c)

β0T0 + β1F0 − 2F1 − xS1 − αP1 − T ′
0 = 0 (3.9d)

where′ ≡ d/dx. These relations will be used in the proof of the following theorem.

Theorem 3.2. There exist special integrals of polynomial type for the second Painlevé
equation, (1.3), if and only if

α = 1
2(2n + 1) n ∈ Z.

Proof. We use the recursion relations above to obtain a formula connectingα and N .
We then examine the possibilities. We may assume thatN > 3 since we have already
performed the calculation forN 6 3. We begin by solving the recursion relation forPk.
Define

p(z) = PN + PN−1z + · · · + P0z
N

that is

Pj = 1

2π i

∫
C

zj−N−1p(z) dz
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whereC is a suitably small contour encircling the origin inC once in an anti-clockwise
direction. Note that the conditions (3.8a) imply that Pk = 0 for k > N , while
condition (3.9a) is equivalent toP−1 = 0, which then impliesPk = 0, k 6 −1. Using
j

∫
C

zj−1f (z) dz = − ∫
C

zjf ′(z) dz, one obtains

(k + 2)Pk+2 − 1
2β1Pk+1 + (N − k)Pk

= 1

2π i

∫
C

zk−N [(1 − z2)p′(z) + (Nz − 1
2β1)p(z)] dz k = 0, . . . , N − 2.

Now, since p is a polynomial of degreeN , (1 − z2)p′(z) + (Nz − 1
2β1)p(z) is a

polynomial of degreeN + 1, and the above calculation implies the coefficients ofzk,
wherek = 1, . . . , N − 1, are zero. Therefore

(1 − z2)p′(z) + (Nz − 1
2β1)p(z)

= (PN−1 − 1
2β1PN) + (−(N − 1)P1 + NP1 − 1

2β1P0)z
N

+(−NP0 + NP0)z
N+1

= 0

using (3.8a), (3.9a). So

p(z) = (1 − z)m(1 + z)N−m m = 1
2(N − 1

2β1). (3.10)

Conditions (3.8a) are easily checked. Requiringp(z) to be a polynomial, or equivalently
that (3.9a) be satisfied, yields

m ∈ {0, 1, 2, . . . , N} (3.11)

so that

β1 =
{ ±2, ±6, . . . ,±2N N odd

0, ±4, ±8, . . . ,±2N N even.
(3.12)

In particular, we have thatβ1 is a constant, so that dPk/dx = 0 for all k.
Consider next the relations forSk, and set

s(z) = SN−1 + SN−2z + · · · + S0z
N−1.

The condition (3.9b) is equivalent toS−1 = 0, which together withPk = 0 for k < 0 gives
Sk = 0 for k < 0, while (3.8a), (3.8b) gives Sk = 0 for k > N . Then by an argument
similar to that forp(z) and by using (3.8b), (3.9b), we have

2z(1 − z2)s ′(z) + [2(N − 1)z2 − β1z + 1]s(z)

= β0p(z) + (SN−1 − β0PN) + (S1 − β1S0 − β0P0)z
N

+(−2(N − 1)S0 + 2(N − 1)S0
)
zN+1

= β0p(z).
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Therefore

s(z) = 1
2β0p(z)z−1/2(1 − z2)−1/4

∫ z

0
z−1/2(1 − z2)−3/4 dz

= β0p(z)F (1, 1
2 ; 5

4 ; z2)

whereF is the usual hypergeometric function, and we have used the following well known
formulae (cf [19])∫ x

0
tp−1(1 − t)q−1 dt = p−1xpF (p, 1 − q; p + 1; x)

F (a, b; c ; z) = (1 − z)c−a−bF (c − a, c − b; c ; z).

Note thats(0) = SN−1 = β0 so (3.8b) is satisfied. Now the only way thats(z) can be a
polynomial of degreeN − 1 is if

β0 ≡ 0

yielding Sk = 0 for k = 0, . . . , N . Indeed, in order fors(z) to be such a polynomial,
F(1, 1

2; 5
4; ζ ) must be of the form(1 − ζ )µpn(ζ ) wherepn is a polynomial of degreen,

pn(1) 6= 0 and 2µ + 2n 6 −1 (cf [19, section 2.2.1], noting thatF(a, b; c; 0) = 1). Using
the identity, ([19, p 112, equation (20)], witha = 1, b = 1

2 and 1
2(a + b + 1) = 5

4) leads to
a contradiction.

Next, we assume the above results forβ1, Pk, β0 andSk, and consider the relations for
Tk. Set

t (z) = TN−1 + TN−2z + · · · + T0z
N−1

and note thatTk = 0 for k < 0 andk > N . Then a similar calculation to that forp(z) and
s(z) above yields

(1 − z2)t ′(z) + ((N − 1)z − 1
2β1)t (z) = 1

2x
(
zp′(z) − Np(z)

)
.

Thus

t (z) = p(z)(1 − z2)−1/2
[
HN−1(x) − xβ1/4

] + 1
2xp(z)(1 − z2)−1( 1

2β1 − Nz).

It is easy to check that the second summand is a polynomial of degreeN − 1 if (3.10) and
(3.11) hold. Therefore, fort (z) to be a polynomial, we must have that

HN−1(x) = 1
4β1x.

Finally, setting

f (z) = FN−2z + FN−3z
2 + · · · + F0z

N−1

using methods similar to those above and using all the results obtained above, we have

2z(1 − z2)f ′(z) + (2(N − 1)z2 − β1z − 1)f (z) = αz2p′(z) − αNzp(z) − ztx(z)
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which has the solution (choosing the constant of integration to be zero so thatf (z) is
analytic at the origin)

f (z) = − (
1
4β1 + αN

)
zp(z)(1 − z2)−1 + 1

6 (αβ1 + N) z2p(z)(1 − z2)−1F(1, 1
2; 7

4; z2).

Requiringf (z) to be a polynomial of degreeN − 1 yields

αβ1 + N = 0 (3.13)

since F(1, 1
2; 7

4; ζ ) is absolutely convergent at|ζ | = 1. Equation (3.13) is the formula
connectingα and N that was sought. Note that ifβ1 = 0, equation (3.13) reduces to
an inconsistency. Further, given (3.10) and (3.13), we have in the casesm = 0, N that
β1 = ±2N , α = ∓ 1

2 andf (z) ≡ 0.
Examination of (3.12) and (3.13) shows that

|α| = N

|β1| > 1

2
.

By use of the methods in section 3.2, if we obtain an integral for8α, we must obtain one
for 8±α±n for all n ∈ Z, so that we also have| ± α ± n| > 1

2, for all n ∈ Z, and hence

α = 1
2(2n + 1) n ∈ Z

are the only possibilities. Since we know from the arguments in section 3.2 that special
integrals do exist for these values ofα, the theorem is proven. �

Note that the set of possibilities given byN = 4n, n ∈ N andβ1 = ±4, which might
lead to integrals for8n, has one integer missing, namelyn = 0, which would require
N = 0. Indeed, for example, the equationsC in the caseN = 8, β1 = 4 are inconsistent.
This ties in with the fact that the known rational solutions forα an integer are actually
‘singular’ solutions; the known solutiony = 1/x for α = −1 is actually a solution of both
y ′′ − 2y3 = 0 andxy − 1 = 0.

It follows from the theorem that any B̈acklund transformation for the second Pain-
levé equation, whose action on the parameterα is such as to not preserve the set,
{(2n + 1)/2 | n ∈ Z}, cannot be a rational expression with respect toy andy ′.

4. Calculations for the fourth Painlevé equation

This example shows that integrals other than of polynomial type can arise naturally out of
the calculation. The fourth Painlevé equation is given by

yy ′′ = 1
2(y ′)2 + 3

2y4 + 4xy3 + 2(x2 − α)y2 + β. (4.1)

In the notation of section 2, we haveA = y, R = 2 and wR = 1
2, so reading off the

leading-order constraints from table 1 we have forM = 1 that yqN,y + NqN/2 = b1qN .
Requiring a polynomial solution to this equation necessitatesb1 to be a constant, with

qN = f (x)y` ` + 1
2N = b1

and wheref (x) is an arbitrary function and̀ ∈ N. The other case,M = 0, leads to the
equationyqN,y + NqN/2 = 0, with solutionqN = k(x)y−N/2 which is not of polynomial
type. So set

b(x, y, y ′) = b0(x, y) + b1y
′.
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Then inserting (2.1) into (2.7) and setting coefficients of powers ofy ′ to zero yields the
following equations:

yqN−1,y + (
1
2N − 1

2 − b1
)
qN−1 = b0qN − yqN,x (4.2N−1)

...

yqk−1,y + (
1
2(k − 1) − b1

)
qk−1

= b0qk − yqk,x − (k + 1)( 3
2y4 + 4xy3 + 2(x2 − α)y2 + β)qk+1 (4.2k−1)

...

0 = yq0,x − b0q0 + ( 3
2y4 + 4xy3 + 2(x2 − α)y2 + β)q1. (4.2cc)

Denoting the right-hand side of equation (4.2k−1) by
∑

γj (x)yj , then one has after
integrating this equation that

qk−1 =
∑ γj (x)yj

j − p
+ ypHk−1(x) + γp(x) log(y)

wherep = (N + 1 − k)/2. Thus, ifp /∈ N, we must haveHk−1(x) = 0, while if p ∈ N,
γp(x) must be zero in order to stay within the polynomial domain. Thus the calculation
differs from that for the second Painlevé equation, in that we obtain conditions additional
to those obtained from (4.2cc).

In general, there seems no real reason to exclude fractional powers and logarithmic
terms. However for the fourth Painlevé equation, keeping such terms still leads only to
integrals of polynomial type, since the coefficients of the additional terms become zero
when the consistency conditions obtained from (4.2cc) are satisfied. Presumably, this is a
consequence of the equation possessing the Painlevé property, which rules out algebraic
and logarithmic singularities and branch points in the solutions. For more general equations
however, this will not be the case.

Examining the possibilities for the degreem of b0 with respect toy yields the cases

(i) m = 2 andN arbitrary
(ii) m = 1 andN even
(iii) m = 0 andN > 1.

Lemma 4.1. It is sufficient to assumeqN = 1 with b1 = 1
2N .

Proof. The same calculation as in lemma 3.1 shows that(g(x)ys)Q satisfies the requisite
equation with the coefficientb being transformed tog′(x)y/g(x)+ sy ′ +b. Since the newb
is of polynomial type with respect toy andy ′, we have that the dependence ofqN on x and
y can be absorbed intob, provided thatysQ is of polynomial type. The equations (4.2)
for the qk imply that any multiplication ofqN by y` leads only to eachqk being multiplied
by y`, so it will be the case that consideringqN = 1 is sufficient. �

4.1. The simplest cases

The case N=1. One obtains

Q = y ′ ± (y2 + 2xy − 2α) + 2
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together with

b(x, y, y ′) = 1
2y ′ ± ( 3

2y2 + xy + α) − 1

satisfying yQ′ − bQ = yy ′′ − (
(y ′)2/2 + 3y4/2 + 4xy3 + 2(x2 − α)y2 + β

)
, under the

constraint

β = −2(±α − 1)2.

This leads to solutions ofPIV in terms of Weber–Hermite functions, [20].

The case N=2. In this case, there are three possibilities forb, namely

b = y ′ +
m∑

k=0

βk(x)yk m ∈ {0, 1, 2}.

In addition to the square of the two integrals found in theN = 1 case above we obtain for
m = 0 the integral

Q = (y ′)2 + 4y ′ − y4 − 4xy3 − 4(x2 − α)y2 + 4

with b = y ′ − 2, valid for β = −2 and arbitraryα.

The case N=3. In addition to the cubic of the integrals obtained in theN = 1 case above,
we obtain integrals for the parameter valuesβ = −2(±α − 3)2, for which

Q = (y ′)3 + (±y2 ± 2xy ∓ 2α + 6
)
(y ′)2

− (
4α2 ∓ 24α+36+y4+4xy3−4y2α ∓ 4y2+4y2x2−8yxα ± 8xy

)
(y ′)

−8x
(
3α2 − 14α ± 15

)
y + 4

(±6αx2 ∓ 3α2 − 10x2 + 10α − 11
)
y2

−8x
(∓3α + 3 ± x2

)
y3 ± 8α3 − 72α2 ± 216α − 216

−2
(
1 ∓ 3α ± 6x2

)
y4 ∓ 6xy5 ∓ y6

andb = 3y ′/2 ± (3y2/2 + xy + α) − 3.

4.2. General results

An extensive discussion of B̈acklund transformations for the fourth Painlevé equation can be
found in [21] and references therein. Using these Bäcklund transformations, with the method
of section 3.2, one obtains integrals of the fourth Painlevé equation, for the parameter sets

β = −2n2 n an integer andα arbitrary

β = −2(±α − m)2 m an odd integer andα arbitrary

whose degrees with respect toy ′ are 2n andm, respectively.
For the parameter values,β = −2m2, α = 0 andm an odd integer, there are two distinct

integrals of polynomial type. These integrals are related by the Bäcklund transformation

y(x; −α, β) = −iy(ix; α, β).
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5. The sixth Painlev́e equation

This example shows how the method may be modified if the integration of the associated
system for theqk is difficult to do in closed form. The sixth Painlevé equation is

A(x, y)y ′′ = W2(x, y)(y ′)2 + W1(x, y)y ′ + W0(x, y)

where

A(x, y) = y(y − 1)(y − x)

W2(x, y) = 1
2(3y2 − 2(x + 1)y + x)

W1(x, y) = −y(y − 1)

x(x − 1)

(
y(2x − 1) − x2

)
W0(x, y) = y2(y − 1)2(y − x)2

x2(x − 1)2

(
α + β

x

y2
+ γ

x − 1

(y − 1)2
+ δ

x(x − 1)2

(y − x)2

)
.

Similar arguments as for the second and fourth Painlevé equations lead to the facts that one
may setqN ≡ 1 together withb = NW2y

′ + b0(x, y), where degree(b0, y) = 4, unlessN
is even in which case one may take degree(b0, y) 6 4. The associated system of equations
to solve for the coefficientsqk of (y ′)k in Q is

y(y − 1)(y − x)qN−1,y − W2qN−1 = b0qN − NW1qN (5.1N−1)

...

y(y − 1)(y − x)qk,y + (k − N)W2qk

= b0qk+1 − y(y − 1)(y − x)qk+1,x − (k + 1)W1qk+1 − (k + 2)W0qk+2 (5.1k)

...

0 = b0q0 − y(y − 1)(y − x)q0,x − W0q1 . (5.1cc)

First, from (5.1N−1) we have both the degree(qN−1, y) = degree(b0, y) − 2, and also
the equations for the coefficients of powers ofy in the symbolic expression forqN−1. From
successive equations in (5.1), at every stage the degree(qk, y) can be ascertained, along with
the equations for the coefficients of powers ofy in the expression forqk, in terms of the
coefficients of the powers ofy in the qj , j > k.

This leads to a set of equations for the coefficients, whose solution can be obtained
by the use of computer algebra to systematically select factors, simplify the nonlinear
overdetermined systems of differential equations, for example using the differential algebra
packagediffgrob2 [26], and perform the remaining integrations. Carrying out the
calculations leads to simple algebraic or differential equations to be solved, but the number of
subcases to be considered becomes large. Indeed, forN = 2, there are over 20 ‘branches’
of the calculation (caused by choosing factors) to be followed! Thus, we present here
the simplest result, and will pursue the application of computer algebra to this problem
elsewhere.

We setα = 2a2, β = −2b2, γ = 2c2 for convenience. Then forN = 1, the integral
obtained is

Q = y ′ − 2b

x − 1
− 2(a + x(c − b) − c)

y

x(x − 1)
+ 2a

y2

x(x − 1)
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subject to the parameter condition

δ = −2(a + b + c + 1)(a + b + c)

for all choices of the signs ofa, b and c. Solutions of the sixth Painlevé equation can be
obtained from these special integrals in terms of the hypergeometric function [22–24].

6. Integral of a third-order equation

In this section, we extend the method to find thegeneral first integral of the third-order
ordinary differential equation,

x2FF ′′′ = (x2F ′ − xF)F ′′ − F 3F ′ − 2µ1(xF − x2F ′) + µ2xF 2 (1.1)

which arises as a classical reduction of a(2+1)-dimensional sine-Gordon system [1]. The
equation (1.1) has no classical or contact symmetries, with which the integral could be
calculated. We show here that the general first integral, which is a rational expression inx,
F , F ′ andF ′′, can be obtained by the method discussed in this paper. Indeed, the constant
of integration appears as a constant of integration of one of the subsidiary equations.

We thus seek to solve the equation

x2FQx + x2FF ′QF + x2FF ′′QF ′ + [(x2F ′ − xF)F ′′ + W̃ (x, F, F ′)]QF ′′

= B(x, F, F ′, F ′′)Q (6.1)

where

W̃ = −F 3F ′ − 2µ1(xF − x2F ′) + µ2xF 2 Q =
N∑

k=0

qk(x, F, F ′)(F ′′)k

and where theqk are polynomial with respect to bothF andF ′. Computing possible powers
of B with respect toF ′′ yields deg(B, F ′′) = 0, so that setting coefficients of powers ofF ′′

in (6.1) to zero yields the system of equations

qN,F ′ = 0 (6.2N )

x2F qN−1,F ′ = BqN − x2FqN,x − x2FF ′qN,F − N(x2F ′ − xF)qN (6.2N−1)

...

x2FqN−k−1,F ′ = BqN−k − x2FqN−k,x − x2FF ′qN−k,F

−(N − k)(x2F ′ − xF)qN−k − (N − k + 1)W̃qN−k+1 (6.2N−k−1)

...

0 = x2Fq0,x + x2FF ′q0,F + W̃q1 − Bq0. (6.2cc)

As before, we setB = ∑
bj (F

′)j , and integrate each equation (6.2N ), . . . ,(6.20) with
respect toF ′ starting from the top down. This amounts to integrating a polynomial inF ′

with symbolic coefficients. Then the final equation (6.2cc) yields, after setting coefficients
of powers ofF ′ to zero, a set of consistency conditions for thebj and the functions of
integration. It is not difficult to show, by comparing powers ofF ′ in the final equation, that
deg(B, F ′) = 1. So, set

B = b0(x, F ) + b1(x, F )F ′
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and perform the integration just outlined, withN = 2. (This is the value ofN for which
we obtain a solution.) The first consistency condition, the coefficient of(F ′)5 in (6.2cc), is

−x2Fq2b1,F + 3x6F 2q2,FF + 4x4q2b1 − 3x6FqF − 3x4F 2q2,FF b1 + x6F 3q2,FFF

+3x2Fq2b1b1,F + 3x2Fb2
1q2,F − 3x4F 2q2,F b1,F − x4F 2q2b1,FF

−b3
1q2 − 3x4Fb1q2,F = 0.

Since we are assuming that bothq2 andb1 are polynomial with respect toF , we have by
comparing powers ofF in the terms in this equation that deg(b1, F ) = 0. Substituting
b1 = s(x), we obtain an equation linear inq2, in which only derivatives with respect to
F appear, and which is, moreover, homogeneous of Euler type; a good sign, since we are
seeking a polynomial solution. Indeed, substituting inb1 = s(x), q2 = t (x)F n, yields

t (x)F n(−s(x) + nx2)(−s(x) + (n + 2)x2)(−s(x) + (n − 2)x2) = 0.

The same argument as in lemma 3.1 yields that we can sett (x) = 1, and we carry theFn

in order to keep everything polynomial; we decide the value ofn at the end.
The next condition, the coefficient of(F ′)4 in (6.2cc), yields an equation forb0(x, F ) in

which only derivatives with respect toF appear, and which is inhomogeneous of Euler type.
Settingb0 = t (x)F + m(x)Fm yields, for s(x) = nx2 that t (x) = −3x/2 andm = 2, −1;
for s(x) = (n − 2)x2 that t (x) = −x and m = −1, −3; and for s(x) = (n + 2)x2, that
t (x) = −2x andm = 2, 4. It transpires that the casess(x) = nx2, (n − 2)x2, lead later in
the calculation to inconsistencies, so we do not consider these cases any further here.

Thus, we have thatq2 = Fn, b1 = (n + 2)x2, andb0 = −2xF + m1(x)F 2 + m2(x)F 4.
The next consistency condition involves the function of integrationH1(x, F ) appearing in
the expression forq1. Again, the only derivatives ofH1 occurring are with respect toF ,
and regarded as a condition forH1, the equation is inhomogeneous of Euler type, and so
is easily integrated to obtain a solution polynomial with respect toF , with coefficients
some (to be determined) unknown functions ofx. The next consistency condition yields
conditions on the various functions ofx that appear inb0 andH1.

Continuing in this way, we arrive at an expression for an integral of (1.1), which contains
one arbitrary constant,κ, and from whichFn divides out, so we may setn = 0 to obtain

Q = (F ′′)2 − 2µ2FF ′′ + 4µ1F
′′ + F 2(F ′)3

x2
+ F 2κ

x2
+ µ2

2F
2 − µ2F

4

x2

+4
µ1F

3

x2
− 4µ1µ2 + 4µ2

1

with B = −2xF + 2x2F ′.
The appearance of the arbitrary constantκ, which arises as a constant of integration of

one of the subsidiary conditions, leads one to suspect that we have found the general first
integral, which is indeed the case.

Using the method of Bureau [25], the integral of (1.1) can be transformed to a subcase
of the fifth Painlev́e equation. Hierarchies of exact solutions with Bäcklund transformations
connecting them for (1.1) can be found in [1].

Thus, application of the method in this case yields the general first integral of a
third-order nonlinear ordinary differential equation by means of a series of linear ordinary
differential equations of Euler type, which represents a significant reduction in the difficulty
of the integration problem. Comparing this method with the one used in [6], one can see
that both methods have to guess the degree of the integral with respect toF ′′, and while the
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method used in [6] involvesad hoc simplifying assumptions, we are assuming a rational
ansatz.

7. Discussion

For ordinary differential equations that have no symmetries, classical or contact, to aid in
their integration, we feel the method described in this paper is an interesting addition to the
equation solver’s ‘tool box’; firstly, because of the possibility of obtaining special integrals
for certain parameter values, secondly because it is algorithmic, thirdly because most of the
calculation can be performed by a computer algebra package, and finally, the consistency
conditions are often simple to solve. Indeed, most of the method involves integration of
polynomial expressions with symbolic coefficients, selection of coefficients, and comparison
of degrees of monomials, all of which are easily performed by computer algebra packages.
Further, packages which can simplify over-determined systems of differential equations (cf
[26]) and perform integration heuristics can be used to semi-automate the entire process.

For some examples, such as the sixth Painlevé equation (cf section 6), the integration
of the relevant rational expression in the associated equations may not be expressible easily
in simple form. We have shown how the method may be adapted to this case. Further,
unlike the process of substituting in an arbitrary differential polynomial, our method solves
for the bounds on the degrees of the various derivative terms as one proceeds, given only
the chosen degree of the highest derivative term in the special integral.

As mentioned in the introduction, special integrals of the Painlevé equations can often
be obtained by the isomonodromy deformation method. That method can only be applied
to equations for which a Lax pair is known. The strength of the method demonstrated here
is that it can be applied to a great many equations about which one knows almost nothing,
since in principle it can be applied to any ordinary differential equation of polynomial type
of any order but of degree one. While in this paper we have applied the method only to
equations possessing the Painlevé property, we have not used the Painlevé property in any
way. It is only that such equations seem to possess special integrals for certain values
of their parameters that we use them here to demonstrate the method. The weakness of
the method, as demonstrated here, is that a polynomial ansatz for the integral is a strong
one, and extensions of the method to other function spaces are important. We have shown
that some extensions arise naturally during the course of the calculation, but a method to
determine the most general form of the ansatz for a particular equation is required, and
would be of great interest.
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