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Abstract. We give new, conceptually simple procedures for calculating special integrals
of polynomial type (also known as Darboux polynomials, algebraic invariant curves, or
eigenpolynomials), for ordinary differential equations. In principle, the method requires only
that the given ordinary differential equation be itself of polynomial type of degree one and
any order. The method is algorithmic, is suited to the use of computer algebra, and does not
involve solving large nonlinear algebraic systems. To illustrate the method, special integrals of
the second, fourth and sixth Paingeequations, and a third-order ordinary differential equation

of Painlewe type are investigated. We prove that for the second Pd&réguation, the known
special integrals are the only ones possible.

1. Introduction

The motivation for this article was to find, algorithmically, general integrals of ordinary
differential equations such as

x2FF" = (x2F' — xF)F" — F3F — 2u1(xF — x°F') + ppxF? (1.1)

where’ = d/dx. Equation (1.1) arises as a reduction of an integrable system, in this case a
(24 1)-dimensional sine-Gordon system [1]. Despite not possessing any symmetries to aid
in its integration, it possesses a general integral which is a rational expresditn i, F
andx.

The seeking of such integrals has a long history. Darboux [2] sought rational solutions
to first-order, first-degree equations, and noted that the factorg), of the numerator and
denominator of the solution satisfy an equation of the form

%Q—bQEO mod A. 1.2)

This insight generalizes to higher-order equations, for which in (1.2) one sifékential
polynomials, that is, expressions which are polynomial in the variables and the derivative
terms. The expressio@ is known variously as a Darboux polynomial, algebraic invariant
curve, special integral, or eigenpolynomial, amongst other terms [3]. Recent articles have
advocated the calculation @@ by substituting arbitrary differential polynomials in (1.2)
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and solving the resulting nonlinear algebraic system for the numerical coefficients, using
the theory of Gobner bases [4,5]. For an equation such as (1.1), this method requires
considerable computational effort. Even if one does know the degreg$,af’, F andx

in Q, namely 23,4 and 2, whicha priori one does not, one would still have hundreds of
nonlinear equations for the 180 coefficients to be determined. In the special qgase-dJ,

(1.1) was integrated in [6] by assuming an ansatz of the form

Q=AW F,F)F")+B(x,F,F)F'+C(x,F, F)

and solving the resulting overdetermined nonlinear system of partial differential equations
for A, B and C, by means of variouad hocsimplifying assumptions, such as restricting
the dependence of the functios B and C. However, analgorithmic, computationally
feasible solution was sought.

The method developed in this paper reduces the calculatiap ahd 5 for (1.1) to a
succession of linear ordinary differential equations of Euler type. This is achieved by first
solving for the dependence df B andC in (1.1) onF’, iterating to obtain their dependence
on F, and finally solving an overdetermined system of consistency conditions for their
dependence on. For the examples in this paper at least, these overdetermined systems can
be solved straightforwardly. The fact they are overdetermined means integrability conditions
and the like can be calculated to simplify them, or in other examples, lead to conditions on
the parameters in the original equation for a solution to exist.

We illustrate the ideas involved by calculating special integrals of polynomial type of
the second, fourth and sixth Painéeequations. The abundance of such special integrals,
or one-parameter family conditions, for these equations means they are a good test of any
method designed to find them. For example, in 1910, Gambier [8] discovered that for
a= % the second Painlévequation

O,=y =2y —xy—a=0 (1.3)
has the special integral

0=y -y —3x (14)
which satisfies

d "

L etwe=y -2y —xy—3. (1.5)

Note thatQ is not a general first integral in the sense that any solutiof ef x wherex is

an arbitrary constant will satisfi,,,, only a solution ofQ = 0 will satisfy ®;,,. We use
our method to prove that the second Pail@guation has special integrals of polynomial
type if and only if

a=32n+1) nel.

The existence of these special integrals leads to solutions of the second @agleation
in terms of the Airy function for these parameter values.

Painle\e, and subsequently Fuchs and others around the turn of the century, sought to
classify those ordinary differential equations of the form,

V' '=F(' y, x)

where F is rational iny’ and y and analytic inx, whose solutions have no movable
singularities other than poles. The Pairdeaquations are six nonlinear ordinary differential
equations having these properties whose general solutions cannot be expressed in terms
of the known elementary or transcendental functions. The P&@nteanscendents are
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regarded as nonlinear special functions as they possess several properties analogous
to those of the classical special functions. For example, for certain parameter
values, the classical transcendental equations have polynomial solutions and solutions
expressible in terms of elementary functions, while the Paikyuations have particular
solutions which are rational or expressible in terms of classical transcendental functions.
In addition, the classical transcendental functions satisfy recurrence relations while
Backlund transformations relate solutions of the Paialequations. Finally, the Laplace
transformation can be used to solve the classical transcendental equations, while th&Painlev
equations can be solved by the isomonodromy deformation method (cf [7, 9, 10]).

Special integrals of polynomial type for the Pairdegquations can often be obtained
from the isomonodromy deformation method. The idea behind the method is to study the
Painlee equation by expressing it as an integrability condition of a linear system, or Lax
pair, which possesses both regular and irregular singular points. It is often the case that for
certain parameter values the formal series solution, or Frobenius expansion, about a certain
regular singular point breaks down. (Within the terminology of Frobenius this occurs when
the roots of the indicial equation differ by an integer). These parameter values are the
same as those characterizing particular integrals of the associated Eagjeation, and
indeed the nature of the formal solution of the linear system restricts the variables to be
solutions of the particular integrals of the associated Painémuation. In many cases the
full set of known particular integrals arises in this way, however this is not always true [10].
Examples exist where only part of the set is characterized in this way. In these cases there
are definite indications that the ‘missing’ integrals are characterized in some other part of the
linear system, but such calculations require experience with the isomonodromy deformation
method, and results may not be as easy to obtain as the method described here. Further,
it is a non-trivial problem to obtain the Lax pair for an ordinary differential equation of
Painle\& type in general.

Equations of Painled’type have become important in recent years because they arise as
reductions of systems solvable by inverse scattering, and their exact analytic solutions are
important as they can be used to generate exact solutions of nonlinear integrable systems
[7,11]. Painlee equations have many physical applications, including asymptotics of
nonlinear evolution equations, correlation functions in ¥ model, the two-dimensional
Ising model, statistical mechanics, plasma physics, resonant oscillations in shallow water,
convective flows with viscous dissipation,0fer vortices in boundary layers, nonlinear
waves, polyelectrolytes, general relativity, nonlinear optics and fibre optics, quantum gravity
and quantum field theory. References for these applications can be found in [7, section 7.1.6]
and [12,p 119]. Since many of the known solutions of the Paénleguations arise
as solutions of special integrals of polynomial type occurring for certain values of the
parameters, a systematic procedure that can generate all such integrals is important.

Kolchin and his group knew that the first Paindegquation has no special integrals of
polynomial type [13], the proof being recorded in a handwritten manusqspe also [14]).

In seeking integrals more general than those of rational type, historically ‘elementary’
and ‘Liouvillian extensions’ have been sought, that is, expressions that also involve radical,
exponential and logarithmic terms, and their integrals with respect to the independent
variable. Prelle and Singer proved that to find elementary first integrals for general algebraic
differential equations, it was sufficient to seek them in a certain form, and they demonstrate
the central role the special integrals or Darboux polynomials have in the calculation of
elementary first integrals in their examples [15]. More recently, there has been interest in

1 ELM is indebted to Michael Singer for a copy of this manuscript.
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the relationship between the existence of special integrals and the differential Galois group
for linear differential equations [3]. Theorems proving bounds on the degree (with respect
to y’) of polynomial type integrals for certain sorts of differential systems are known (cf
[15] and references therein, and [16]). The examples given in the present paper show that
in general any such bound depends necessarily on the numerical coefficients and parameters
appearing in the equation.

The method for the calculation of special integrals demonstrated here is algorithmic,
simple in concept, and applicable (in principle) to any differential equation of polynomial
type in which the highest-order derivative term occurs to highest power one. The method
is simple enough to be able to be generalized to function spaces other than polynomial, but
the function space used would depend on the equation to be integrated.

2. Integrals of polynomial type

Here, we briefly review the main facts concerning special integrals of polynomial type,
and fix our notation. For simplicity, we assume an ordinary differential equation of order
two and degree one, and thus an integral of order one. However, all the results in this
section generalize to equations of arbitrary order and degree one. (Recall that the order
of a differential equation is the highest number of times a dependent variable has been
differentiated in the equation, while the degree of the equation is the highest power of the
highest derivative term occurring in the equation).
We assume the integr# to be of the form

N
0=> qx. N (2.1)
k=0

whereN > 0, gy # 0 and where the; are assumed to be polynomial with respectyto
For the sake of simplicity, suppose further th@tis irreducible, that is,0 has no more
than one factor depending or, and let the equation studied be of the form

D=y —W(x,y,y)=0

where W is a polynomial with respect t¢ andy’. By definition, the special integrad
satisfies a relation

A dQ ron ron ” /
D(xvyvyvy )a—B(xaysy,y )Q=H(x,y,y,y )(y —W()C,y,y)) (22)

whereD, B and H are polynomial with respect to all variables except perha@nd where
Q = 0 andH = 0 have only trivial solutions in common. This implies in particular tiat
does not divideH. The reason for this assumption is that we want any solutio@ ef 0
to be a solution ofb.

Let O, denote the partial derivative @ with respect tax, that is, the derivative 0
with respect to its explicit dependence enregardingx, y andy’ as separate independent
variables, and similarlyQ, and Q.. We then have the identity

(ZiQ = Qx+y/Qy+y//Qy’ (23)
X
showing that @/dx is linear iny”. We can now considerably simplify the problem (2.2)
to be solved. All occurrences of’ in D and B can be absorbed int& by subtracting
suitable multiples ofb. SinceQ does not depend oy, we have by comparing powers of



Algorithms for special integrals 977

y” on both sides of the equation (2.2) thdtdoes not depend oy’ so that we need only
solve

d
D(x,y, y’)d—f —B(x,y,Y)Q0=H(x,y,y) (0" = W(x,y,y)). (2.4)

Further, considering coefficients of’ on both sides of the equation (2.4) leads to the
identity, DQ, = H, hence it sufficient to solve

D(x,y,y) (0« + Y Oy +W(x,y,Y)0y) = B(x,y.,y)0. (2.5)

Now, sinceQ does not divideH, it does not divideD, so it must be true tha@ divides
O0x+y 0y +W(x,y,y)Qy, using the assumption thét is irreducible (it is a well known
fact from algebra that iff, ¢ andhk are polynomials withf irreducible, such thaf divides
gh, then f must divide one of, #). Thus, it is sufficient to solve the problem

QO +Y' 0y + W(x,y,y)Qy =b(x,y,))Q. (2.6)

For the more generab = A(x, y, y)y" — W(x, y,y'), the same arguments yield that
it is sufficient to solve

AQ: +AY'Qy + WQy =b(x,,))0Q. 2.7)

In the next lemma, we note that our search for polynomial integrals will yield every
solution infinitely many times!

Lemma 2.1. If Q is an integral of polynomial type, then so@” foranyp € N, p # 0.

Proof. SupposeQ satisfies (2.7). Insertin@@? in the left-hand side of (2.7) we obtain
that Q7 satisfies

A(Q")x + AY(QP)y + W(x, y, ¥)(Q")y = p - b(x,y,y)Q".

Thus, any solutiorQ of (2.7) will imply infinitely many ‘redundant solutions@?”. Indeed,
a function of an integral will be an integral, although not necessarily of polynomial type.
([

Irreducible special integrals of polynomial type are not unique. Given several such
integrals, it is sometimes possible to combine them to obtain a general integral. A summary
of known results appears in [5].

Although we assumed to be irreducible, this is not actually a restriction. It is simple
to show that ifQ; and Q, are integrals, then so i©:0,. The converse is also true; if
010> is an integral, then so ar@; and Q, (provided both factors contain the highest
derivative term); cf [3]. Thus it suffices to find the irreducible integrals.

Before turning to the mechanics of finding special integrals of polynomial type of
particular equations, we record in the following table the so-called leading-order constraints,
in the cased,, = 0. We use (2.1) and (2.7) and set

M R
b(x,y, ) =D bile, OO W= welx, NGO
k=0 k=0

Comparing leading powers of on both sides of (2.7) yields constraints #fy g5, and
by, Which are given in table 1.
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Table 1. Leading-order constraints for integrals 4fx, y)y” — W(x, y, y") = 0.
N =degQ,y), M = degb,y’), R = degW, y").

R Constraints Possibilities fay/
0,1 () gny=0 M=0
(i) Agn.y =qnbu M=1
2 (I) AQN.y+NwRQN =0 M=0
(i) Agny+ Nwrqy =bugy M =1
>3 Nwgr=by M=R-1

3. Calculations for the second Painle& equation

In this section we show how to generate systematically all integrals of polynomial type for
the second Painlévequation,

O, =y -2y —xy—a=0. 1.3)

Considering table 1, for the second Paiesquation we hav& = 0, that is, W,, = 0,
and A = 1, so there are two cases to consider,Mi)= 0 andgy,, =0, and (i) M =1
and gy, = bygn. The second case has no solutions 4@r polynomial iny. Before
considering case (i) in more detail for the second Painkeguation, we note the following
lemma which we use to simplify the calculation.

Lemma 3.1. If gy, = 0, it is sufficient to considegy = 1.

Proof. Assume thatQ satisfies (2.6). Inserting(x)Q in the left-hand side of (2.6) we
obtain thatg(x) Q satisfies

€0+ Y @)y +W(x,y, )80y = (¢ (x)/8(x) + b(x,y.y)) (gQ)
so any dependence gfy on x can be absorbed intb(x, y, y). O
Thus, to find special integrals of the second Paialeguation of polynomial type, it is

sufficient to solve

0, +Y0,+@2°+xy+a)Qy =b(x,y)0 B.1)
with Q of the form

N
0=> g0 gv=1
k=0

Reading off coefficients of powers of in (3.1) yields the system

L]N,]_’y = b (3.21\/,1)
ANty = ban_is1— (N —k +2)(2y% + Xy + 0)qN—k+2 — qN—k+1x (3.2v—x)
qo.y = b1 — 2(2y° + xy + @)g2 — q1.x (3.2)

0= bgo — (2y> + xy + a)g1 — qo... (3.2.)
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Setting
b= Bi(x)y
j=0

we have from (3.2_;) that

- IBJ(X) i+1
gn-1= Z ——— /" 4+ Hy_1(x).
j=0 J+ 1

This is then inserted into (3,2 2), which is integrated symbolically to obtain an expression
for gy—o in terms of theg;, j = 0,...,m and Hy_1, with Hy_»(x) being the function of
integration. Continuing in this way, we can expressdRes, . .., go in terms of thes; with
N — 1 functions of integration, théf;, k =0, ..., N — 1. Then, inserting the expressions
for go andg; into (3.2.), we obtain a systent, of consistency condition®r the g; and
the Hy, by setting the coefficients of the various powersydb zero.

We now determine the possible values far the degree ob with respect toy. If
m # 0, the degree of;, with respect toy is (N — k)(m + 1). Then (3.2.) implies that in
order to balance powers of we must have thati + N(m + 1) =3+ (m + 1)(N — 1) or
m = 1. If m =0, thenN must be an even integer. For both casess O or 1, we obtain
that deggy, y) < 2(N — k).

3.1. The simplest examples

The caseV = 1. We show this case explicitly both to show how trivial is the calculation,
and how the value ofx arises naturally as a consistency condition. Insertiig=
qo(x,y) + y' in (3.1) and equating coefficients of powersydfto zero yields

qoy =Db (3.3)

qox +2y3 + xy +a = bqo. (3.30)

We haveb = Bo(x) + B1(x)y, implying go = Bo(x)y + 3B1(x)y? + Ho(x). Inserting this in
(3.30), we obtainC:

2=p7/2 Bo(x) + x = Ho(x)B1 + B§

B1(x) = 3Bop1/2 Bo(x)Ho(x) = a + Hy(x).
Thus

bay)=%2y 0=y xyEx2  a=7F]
which are the integrals fod.1,, known to Gambier.

The caseN = 2. Performing the same calculation fof = 2 yields only the squares of
the two integrals obtained in th¥ = 1 case above.

The caseV > 3. The best strategy for solving the consistency conditiisto begin with
the coefficient of the highest power ofin (3.2..), since that involves the fewest number
of indeterminants, and to work down. We obtain the polynomial integratifos, to be

0_32= 0"+ (7 + 3000 = [y + 307 —4y]y = 0%+ 30° + 4y(3° + 3x) — 2.
while the integral ofds); is
032=0"> = O*+ 3007 = [P+ 307+ 4]y + 0%+ 3003 + 4y (y* + 3x) + 2.
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Similarly, the integral for®_s is

05 =)+ %+ 3000 = 2[(* + 30— 6y] ()®
—20%+ 30 [0%+ 307 - 6] 02+ {[02 + 302 — 6] + 2x}

+(y%+ %x)‘r’ —12y(y? + %x)3 + 4y* + 26xy? — 32y + %’xz.

The formulae for the integrals become considerably more complex with incresibgt
the calculation of them is quite straightforward.

Solutions to theQ = 0, and hence to the second Paideaquation, are expressible in
terms of Airy functions [7, 8,17, 18].

3.2. Transformations connecting the integrals
The second Painlévequation has two well knownagklund transformations
y(x; —a) = —=y(x; @) (3.4a)

1+ 2«
2y(x; @) + 2y(x; 0)? + x

A suitable combination of these two @Bklund transformations yields the ‘inverse’
transformation

a# -1 (3.40)

yx;a+1) =—yx;a) —

1-2«x
2y(x; o) — 2y(x; )2 — x

yox;ao—1) = —y(x; a) — a# % (3.5)
Note that the denominators of these transformations are proportioal {e.

Suppose, for example, satisfies®s,». Using (3.5) one obtaing which satisfiesb,,.
Then, inserting the expression far into the integralQ,,> yields a rational expression
whose numerator i$3,,. Conversely, suppose satisfies®,,,. Substituting (3.8) in
Q32 = 0 with « = % yields Q1/2Q2_1/2 = 0; since Q_;» is the denominator of the
Backlund transformation and is therefore non-zero, we have obtgngd= 0.

More generally, it can be seen thaa&klund transformations ‘lift’ to the integrals, but
operate in the reverse direction; a transformation which sends solutiobg, @b solutions
of ®,, will map an equationQ,, = 0 to an equationQ,, = O (after removal of non-
zero factors). Note that since thé&klund transformations are of rational type, we obtain
mappings between integrals of polynomial type.

It follows that there is an integral of polynomial type fdx, for every« of the form,
(2n +1)/2, n € Z. Further, the degree of 2,12 With respect toy’ is [2n 4+ 1|. This
example shows that any bound on the degrees of special integrals depends necessarily on
the numerical coefficients and parameters appearing in the equation.

3.3. Recursion formulae for the general case

The method of integration outlined above is highly iterative. Indeed, recalling that
deg@r, y) < 2(N — k), and setting

g (x,y) = Pe(By* M0 + Si(Bo, By N O+ T (Bo, Bu, x, Hy—1)y* V072

+Fi(Bo, P1, N, Hy_1, ) y* NP3 1 g (3.6)
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where&; are the lower-order terms with respectytothe calculation yields the (descending)
recursion formulae

Pi= = (BPesr— 2k +2)P 7
C= SN =B (B1Pri1 — 2k + 2) Pry2) (3.79)
S = B1Sis1 — 2(k + 2)Ses2 + BoP, dp (3.70)
F= o —p 1 \PiSen 2+ PPy — 4P .
1 d
T, = m B1Tir1 — 2k + ) Tiy2 — askﬂ — (k+ 2)x Pry2 + BoSk+1
(3.7c)
1 d
Fy = 2N 53 BrFry1 — (k +2) 2Fiq2 + xSpq2 + aPri2) — aTk+1 + BoTi+1
(3.7d)
with initial data
Py=1 Py_1= 3P (3.89)
Sy=0 Sy—1=PBo (3.80)
Ty =0 Ty_1= Hy_1(x) (3.8)
Fy=0  Fy,=0. (3.8d)

Inserting (3.6) in (3.2) and then setting to zero the coefficients pfyields the
consistency conditions

BrPo—2P, =0 (3.9)
BoPo + B1So — 251 — Py =0 (3.%)
BoSo + P1To — 2T1 —xPL — S; =0 (3.%)
BoTo+ rFo—2F1 —xS1 —aP1 — Ty =0 (3.9)

where’ = d/dx. These relations will be used in the proof of the following theorem.

Theorem 3.2. There exist special integrals of polynomial type for the second Pd&nlev
equation, (1.3), if and only if

a=32n+1) nel.

Proof. We use the recursion relations above to obtain a formula conneetiagd N.
We then examine the possibilities. We may assume Mat 3 since we have already
performed the calculation foN < 3. We begin by solving the recursion relation fBy.
Define

p() = Py + Py_1z +---+ Poz"

that is
1

- j—N-1 d
o Cz p(2) dz

Pj
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where C is a suitably small contour encircling the origin @ once in an anti-clockwise
direction. Note that the conditions (28imply that P, = 0 for k > N, while
condition (3.9) is equivalent toP_; = 0, which then impliesP, = 0, k < —1. Using
Jj [z (@) dz = — [.27 f'(z) dz, one obtains

(k +2) P2 — 3P1Prsr+ (N — k) Py

= | A=)+ (Nz— 1B)p@)] dz k=0,...,N—2
27T| C

Now, since p is a polynomial of degreeV, (1 — z9)p'(z) + (Nz — %ﬂl)p(z) is a

polynomial of degreeN + 1, and the above calculation implies the coefficientszhf
wherek =1,..., N — 1, are zero. Therefore

(1-2%)p' () + (N2 — 30 p(2)
= (Py_1— 3p1Py) + (—(N = D)Py + NPy — 81 Po)z"
+(—=NPy+ NPyzV+t
=0
using (3.&),(3.9). So
p)=1A—-)"A+)¥™" m=1(N - 1p0. (3.10)

Conditions (3.8) are easily checked. Requiring(z) to be a polynomial, or equivalently
that (3.9) be satisfied, yields

mel{0,1,2,...,N} (3.11)
so that

+2,46,...,+£2N N odd
1= (3.12)
0, +4, 48, ..., £2N N even.

In particular, we have tha#; is a constant, so thatRj/dx = O for all k.
Consider next the relations fat,, and set
5(z) = Sy_1+ Sy_2z + -+ SozV L.

The condition (3.8) is equivalent toS_; = 0, which together withP, = 0 for k < O gives
Sy = 0 for k < 0, while (3.&), (3.&) gives S, = 0 for k > N. Then by an argument
similar to that forp(z) and by using (3.8), (3.%), we have

2z(1—z%)s'(2) + [2(N — D)z? — iz + 1]s(z)
= Bop(2) + (Sn—-1 — PoPy) + (51 — B1So — PoPo)z"
+(=2(N = 1)So + 2(N — 1)Sp)z"**

= Bop(2).
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Therefore
z
$(2) = Jop(2)z 21— 22 / S22y
0

= Pop()F (1, };2:2%

where F is the usual hypergeometric function, and we have used the following well known
formulae (cf [19])

f AT d = pTF(p. - gip+ L)
0

Fa,b:c:2)=1Q—2) """ F(c—a,c—b;c; 7).

Note thats(0) = Sy_1 = Bo so (3.®) is satisfied. Now the only way thaiz) can be a
polynomial of degreeV — 1 is if

Bo=0

yielding Sy = 0 for k = 0,..., N. Indeed, in order for(z) to be such a polynomial,
F(1, 3; 2;¢) must be of the form(1 — ¢)*p,(¢) where p, is a polynomial of degree,
pn(1) #0 and 24 + 2n < —1 (cf [19, section 2.2.1], noting th&t (a, b; ¢; 0) = 1). Using
the identity, ([19, p 112, equation (20)], with=1,b = J and 3(a + b+ 1) = }) leads to
a contradiction.

Next, we assume the above results far P, Bo and S, and consider the relations for
T. Set

1(z) =Ty_14+ Ty_oz 4+ TozV !

and note thaff, = 0 for k < 0 andk > N. Then a similar calculation to that fqr(z) and
s(z) above yields

1—21'@) + (N = Dz — 380t (x) = 3x (2p' (@) — Np(2)).
Thus
1(z) = p(R)A = 2 ? [Hy-1(x) — xB1/4] + 3xp(2)(L — 29" (581 — N2).

It is easy to check that the second summand is a polynomial of dégred if (3.10) and
(3.11) hold. Therefore, for(z) to be a polynomial, we must have that

Hy_1(x) = 3B1x.
Finally, setting
f(@2) = Fy_2z 4+ Fy_32°+ -+ + FozV !
using methods similar to those above and using all the results obtained above, we have

2:(L— 22 f'(2) + 2N — Dz? — B1z — ) f(2) = az®p'(z) — aNzp(z) — 21,(2)
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which has the solution (choosing the constant of integration to be zero sof thatis
analytic at the origin)

f@)==(Gh+aN)p@A -2+ § @b+ N)22p@)A— A FA 3: 5:29).

Requiring f (z) to be a polynomial of degre& — 1 yields

afr+N=0 (3.13)
since F(1, %; ;71; ¢) is absolutely convergent at| = 1. Equation (3.13) is the formula

connectingae and N that was sought. Note that f; = 0, equation (3.13) reduces to
an inconsistency. Further, given (3.10) and (3.13), we have in the eases0, N that
pr=+2N,a =F3 and f(z) = 0.

Examination of (3.12) and (3.13) shows that

N 1

ol = —= = 5.
1Bal — 2

By use of the methods in section 3.2, if we obtain an integrakdfgy we must obtain one
for ®.,+, for all n € Z, so that we also havet o +n| > % for all n € Z, and hence

oc=%(2n~|—l) nez

are the only possibilities. Since we know from the arguments in section 3.2 that special
integrals do exist for these values @f the theorem is proven. d

Note that the set of possibilities given By = 4n, n € N and 8; = +4, which might
lead to integrals ford,, has one integer missing, namely= 0, which would require
N = 0. Indeed, for example, the equatiofisn the caseN = 8, 1 = 4 are inconsistent.
This ties in with the fact that the known rational solutions éoran integer are actually
‘singular’ solutions; the known solutiop = 1/x for « = —1 is actually a solution of both
y" —2y®=0andxy —1=0.

It follows from the theorem that any &klund transformation for the second Pain-
levé equation, whose action on the parametelis such as to not preserve the set,
{(2n + 1)/2|n € Z}, cannot be a rational expression with respect @nd y’.

4. Calculations for the fourth Painlevé equation

This example shows that integrals other than of polynomial type can arise naturally out of
the calculation. The fourth Painléevequation is given by

w' =307+ 3y 4 4xy® 4+ 207 — @)y + B. (4.1)
In the notation of section 2, we have = y, R = 2 andwg = % so reading off the
leading-order constraints from table 1 we have #6r= 1 thatygy , + Ngn/2 = bign.
Requiring a polynomial solution to this equation necessitaiet® be a constant, with

gy = fx)y" C+ 3N =Dhb
and wheref (x) is an arbitrary function and € N. The other caseM = 0, leads to the
equationygy., + Nqn/2 = 0, with solutiongy = k(x)y~"/? which is not of polynomial
type. So set

b(x,y,y") = bo(x,y) + b1y
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Then inserting (2.1) into (2.7) and setting coefficients of powers’db zero yields the
following equations:

yan-1y + (3N — 5 — b1) gn-1 = bogn — Yqn.» (4.2y_1)

Yae-1y + (3(k — 1) — b1) gi—1

= bogk — yqk.x — (k + DGy + 4xy® + 2% — 0)y® + Bgrsr (4.2-1)

0 = yqo.x — bogo + 3y* + 4xy® + 2(x* — &) y* + B)q1. (4.2

Denoting the right-hand side of equation (4.2 by > y;(x)y/, then one has after
integrating this equation that

. J
ta= X 5 s + 0 logly)

wherep = (N +1—k)/2. Thus, ifp ¢ N, we must haveH,_;(x) = 0, while if p € N,
¥p(x) must be zero in order to stay within the polynomial domain. Thus the calculation
differs from that for the second Painkequation, in that we obtain conditions additional
to those obtained from (4.9.

In general, there seems no real reason to exclude fractional powers and logarithmic
terms. However for the fourth Painlevequation, keeping such terms still leads only to
integrals of polynomial type, since the coefficients of the additional terms become zero
when the consistency conditions obtained from (4.2re satisfied. Presumably, this is a
consequence of the equation possessing the P&igdesperty, which rules out algebraic
and logarithmic singularities and branch points in the solutions. For more general equations
however, this will not be the case.

Examining the possibilities for the degreeof by with respect toy yields the cases

(i) m =2 andN arbitrary
(i) m =1 andN even
(i) m =0andN > 1.

Lemma 4.1. It is sufficient to assumegy = 1 with b = S N.

1
2
Proof. The same calculation as in lemma 3.1 shows théat)y*) Q satisfies the requisite
equation with the coefficiert being transformed tg’'(x)y/g(x) +sy’ +b. Since the new
is of polynomial type with respect tp andy’, we have that the dependenceggf on x and
y can be absorbed intb, provided thaty® Q is of polynomial type. The equations (4.2)
for the g, imply that any multiplication ofyy by y¢ leads only to eacly, being multiplied
by y¢, so it will be the case that considerigg = 1 is sufficient. O

4.1. The simplest cases
The case N=1. One obtains

0=y £0%+2xy —20) +2
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together with
b,y ) =3y £y +xy+a) -1

satisfyingyQ’ — bQ = yy” — ((y/)2/2 + 3y%/2 + 4xy® + 2(x% — a)y? + ,6), under the
constraint

B = —2(+a — 12

This leads to solutions ofy, in terms of Weber—Hermite functions, [20].

The case N=2. In this case, there are three possibilities fomamely
b=y +Y )y m € {0, 1,2}
k=0
In addition to the square of the two integrals found in ffie= 1 case above we obtain for
m = 0 the integral
0 =0 +4y — ' — 4y’ —4(x® — )y’ + 4
with b =y’ — 2, valid for 8 = —2 and arbitraryx.

The case N=3. In addition to the cubic of the integrals obtained in tie= 1 case above,
we obtain integrals for the parameter valyes: —2(+a — 3)?, for which

0= "%+ (£5° £ 2y F 20 4 6) ()?
— (40[2 F 240+36+ y* +4xy® —4y20 F 4y°+4y°x%2 —8yxa + 8xy) "
—8x (30? — 14ar £ 15) y + 4 (£6ax? F 30 — 10¢% + 100 — 11) y?
—8x (F3 + 3+ x?) y® + 80> — 720 £+ 216 — 216

-2 (1:|: 3 + 6x2) y* T 6xy® 1 y°
andb = 3y /24 (3y?/2+ xy + a) — 3.

4.2. General results

An extensive discussion ofd&klund transformations for the fourth Pairdeequation can be
found in [21] and references therein. Using thegelBund transformations, with the method
of section 3.2, one obtains integrals of the fourth Pai@aleguation, for the parameter sets

B = —2n? n an integer andr arbitrary

B = —2(+a —m)? m an odd integer and arbitrary

whose degrees with respect gbare 2 andm, respectively.
For the parameter value8,= —2m?, « = 0 andm an odd integer, there are two distinct
integrals of polynomial type. These integrals are related by #hekBnd transformation

y(x; —a, B) = —iy(ix; a, ).
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5. The sixth Painlee equation

This example shows how the method may be modified if the integration of the associated
system for they, is difficult to do in closed form. The sixth Painlewequation is

Ax, y)y" = Walx, ) (V)2 + Wilx, y)y' + Wo(x, y)
where
Ax,y) =y —-D@y —x)

Wa(x,y) = 3(3y* — 2(x + Dy +x)

Y -D

Wl(xay): m(y(Zx—l)—xz)
YAy - DAy —x)? X x—1 x(x — 1)2
Wolx,y) = 20 172 (a+ﬂy2+y(y_1)2+8(y_x)2>,

Similar arguments as for the second and fourth Patkxyuations lead to the facts that one
may setgy = 1 together withb = NW,y' + bo(x, y), where degreég, y) = 4, unlessN

is even in which case one may take degbgef) < 4. The associated system of equations
to solve for the coefficients, of (y )X in Q is

YO — D —x)gn-1y — Wagn_1 = bogy — NWign (5.1y-1)

Y& =D —X)qry + (k — N)Wagy
=bogi+1 — Yy — D — X Gig1x — (K + DWigeyr — (K + 2 Woge2  (5.%)

0=bhogo — y(y — D(y — x)q0.« — Woq1 . (5.1.)

First, from (5.1y_1) we have both the degrgg,_1, y) = degreébo, y) — 2, and also
the equations for the coefficients of powersyoh the symbolic expression fgry_;. From
successive equations in (5.1), at every stage the degreg(can be ascertained, along with
the equations for the coefficients of powersyofn the expression fogy, in terms of the
coefficients of the powers of in theg;, j > k.

This leads to a set of equations for the coefficients, whose solution can be obtained
by the use of computer algebra to systematically select factors, simplify the nonlinear
overdetermined systems of differential equations, for example using the differential algebra
packagediffgrob2 [26], and perform the remaining integrations. Carrying out the
calculations leads to simple algebraic or differential equations to be solved, but the number of
subcases to be considered becomes large. Indeed] for2, there are over 20 ‘branches’
of the calculation (caused by choosing factors) to be followed! Thus, we present here
the simplest result, and will pursue the application of computer algebra to this problem
elsewhere.

We seta = 242, B = —2b%, y = 2c? for convenience. Then foN = 1, the integral
obtained is

2

o Y §
0=y _T_l—z(a+x(c—b)—c)x(x_1)+zax(x—l)
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subject to the parameter condition
§=—-2a+b+c+D@+b+c)

for all choices of the signs af, b andc. Solutions of the sixth Painlévequation can be
obtained from these special integrals in terms of the hypergeometric function [22-24].

6. Integral of a third-order equation

In this section, we extend the method to find tpeneral first integral of the third-order
ordinary differential equation,

X2FF" = (x2F' — xF)F" — F3F' — 2u1(xF — x°F') + ppx F? (1.1)
which arises as a classical reduction of2a-1)-dimensional sine-Gordon system [1]. The
equation (1.1) has no classical or contact symmetries, with which the integral could be
calculated. We show here that the general first integral, which is a rational expression in
F, F’ and F”, can be obtained by the method discussed in this paper. Indeed, the constant

of integration appears as a constant of integration of one of the subsidiary equations.
We thus seek to solve the equation

x2FQ, + x2FF Qr + x2FF"Qp + [(x2F' —xF)F" + W(x, F, F)] Q¢

=B(x,F,F,F")Q (6.1)

N
W = —F3F — 2u1(xF — x°F') + puox F? 0= qu(x, F, F))(F")*
k=0

and where the, are polynomial with respect to both and F’. Computing possible powers
of B with respect toF” yields de@B, F”) = 0, so that setting coefficients of powers Bf
in (6.1) to zero yields the system of equations

gn.r =0 (6.2v)

X*Fqn-1p = Bqy — x*Fqn » — X*FF'qy r — N(X*F' — xF)qy (6.2v-1)

x*Fqn_i-1.7 = Bqn-i — X*Fqn_1. — X*FF'qn_i.r

—(N —k)(x®F' = xF)qy_x — (N —k + DWgqy_x41 (6.2v ;1)

0= x?Fqox +x2FF'qor + Wq1 — Bqo. (6.2)

As before, we seB = Y b;(F’)/, and integrate each equation (6)2. . .,(6.2) with
respect toF’ starting from the top down. This amounts to integrating a polynomidi’in
with symbolic coefficients. Then the final equation (6)2sields, after setting coefficients
of powers of F' to zero, a set of consistency conditions for #heand the functions of
integration. It is not difficult to show, by comparing powersfin the final equation, that
deg B, F') = 1. So, set

B = bo(x, F) + bi(x, F)F'
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and perform the integration just outlined, with = 2. (This is the value oV for which
we obtain a solution.) The first consistency condition, the coefficiedForP in (6.2..), is

—x2Fqob1 p + 3x®F%qs pr + dx*qoby — 3x°Fqr — 3x*F2qp prb1 + x°F3q0 prr
+3x2Fqobiby p + 3x°Fbiqo r — 3x* F2q2 pby p — x*F?qoby rr

—b3gs — 3x*Fbigsr = 0.

Since we are assuming that bagh and b; are polynomial with respect té', we have by
comparing powers of" in the terms in this equation that dég, ) = 0. Substituting

b1 = s(x), we obtain an equation linear igp, in which only derivatives with respect to

F appear, and which is, moreover, homogeneous of Euler type; a good sign, since we are
seeking a polynomial solution. Indeed, substitutingin= s(x), g> = t(x) F", yields

1(x)F" (=5 (x) + nx?)(—s(x) + (n + 2)x>)(—=s(x) + (n — 2)x%) = 0.

The same argument as in lemma 3.1 yields that we can(sgt 1, and we carry thé™”
in order to keep everything polynomial; we decide the value at the end.

The next condition, the coefficient 0F")* in (6.2..), yields an equation faby(x, F) in
which only derivatives with respect t6 appear, and which is inhomogeneous of Euler type.
Settingbg = ¢t (x)F + m(x) F™ yields, fors(x) = nx? thatz(x) = —3x/2 andm = 2, —1;
for s(x) = (n — 2)x2 thatt(x) = —x andm = —1, —3; and fors(x) = (n + 2)x2, that
t(x) = —2x andm = 2, 4. It transpires that the caseér) = nx?, (n — 2)x2, lead later in
the calculation to inconsistencies, so we do not consider these cases any further here.

Thus, we have thaj, = F", by = (n + 2)x?, andby = —2xF 4+ m1(x)F? 4+ ma(x) F*.

The next consistency condition involves the function of integrafifjix, F) appearing in
the expression fog;. Again, the only derivatives off; occurring are with respect t&,

and regarded as a condition féf, the equation is inhomogeneous of Euler type, and so
is easily integrated to obtain a solution polynomial with respecttowith coefficients
some (to be determined) unknown functionsxof The next consistency condition yields
conditions on the various functions efthat appear irby and H;.

Continuing in this way, we arrive at an expression for an integral of (1.1), which contains
one arbitrary constank, and from whichF" divides out, so we may set= 0 to obtain
F2(F)® F%

paF*4
x2 + x2

Q = (F")? = 2u2F F" + 4ps F" + +uF? = =

u1F3
+4 2 Apapiz + 4ud

with B = —2xF + 2x2F"'.

The appearance of the arbitrary constantvhich arises as a constant of integration of
one of the subsidiary conditions, leads one to suspect that we have found the general first
integral, which is indeed the case.

Using the method of Bureau [25], the integral of (1.1) can be transformed to a subcase
of the fifth Painle¥ equation. Hierarchies of exact solutions withcRlund transformations
connecting them for (1.1) can be found in [1].

Thus, application of the method in this case yields the general first integral of a
third-order nonlinear ordinary differential equation by means of a series of linear ordinary
differential equations of Euler type, which represents a significant reduction in the difficulty
of the integration problem. Comparing this method with the one used in [6], one can see
that both methods have to guess the degree of the integral with resp@ttand while the
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method used in [6] involvead hoc simplifying assumptions, we are assuming a rational
ansatz.

7. Discussion

For ordinary differential equations that have no symmetries, classical or contact, to aid in
their integration, we feel the method described in this paper is an interesting addition to the
equation solver’s ‘tool box’; firstly, because of the possibility of obtaining special integrals
for certain parameter values, secondly because it is algorithmic, thirdly because most of the
calculation can be performed by a computer algebra package, and finally, the consistency
conditions are often simple to solve. Indeed, most of the method involves integration of
polynomial expressions with symbolic coefficients, selection of coefficients, and comparison
of degrees of monomials, all of which are easily performed by computer algebra packages.
Further, packages which can simplify over-determined systems of differential equations (cf
[26]) and perform integration heuristics can be used to semi-automate the entire process.

For some examples, such as the sixth Pamleguation (cf section 6), the integration
of the relevant rational expression in the associated equations may not be expressible easily
in simple form. We have shown how the method may be adapted to this case. Further,
unlike the process of substituting in an arbitrary differential polynomial, our method solves
for the bounds on the degrees of the various derivative terms as one proceeds, given only
the chosen degree of the highest derivative term in the special integral.

As mentioned in the introduction, special integrals of the Patleguations can often
be obtained by the isomonodromy deformation method. That method can only be applied
to equations for which a Lax pair is known. The strength of the method demonstrated here
is that it can be applied to a great many equations about which one knows almost nothing,
since in principle it can be applied to any ordinary differential equation of polynomial type
of any order but of degree one. While in this paper we have applied the method only to
equations possessing the Pai@groperty, we have not used the Pai@groperty in any
way. It is only that such equations seem to possess special integrals for certain values
of their parameters that we use them here to demonstrate the method. The weakness of
the method, as demonstrated here, is that a polynomial ansatz for the integral is a strong
one, and extensions of the method to other function spaces are important. We have shown
that some extensions arise naturally during the course of the calculation, but a method to
determine the most general form of the ansatz for a particular equation is required, and
would be of great interest.
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